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Executive Summary

The purpose of this project was to train and simulate a Crazyflie drone using a spiking neural

network so that it can operate in a real-world environment by itself. Our goal was to demon-

strate a drone taking off, hovering, and landing by itself in the simulation.

The first step was to train spiking neural networks (SNNs). SNNs are inspired from the

human brain and take information from a given state to make computations based on that

given data. By using a genetic algorithm, we have built spiking neural networks that are

optimized to get the optimal output. We used EONS, Evolutionary Optimization for Neuro-

morphic Systems developed by TENNLab, for model training. EONS utilizes evolutionary

optimization for the applications of spiking neural networks, and we used it to train our

drone in a simulation environment to check its performance.

To test performance, we used a virtual simulation environment. We had three options:

the pre-existing environment from last year’s team, a simulator, and an environment from

Dr. Simon D. Levy from Washington and Lee University, and to develop our own simulation

environment if neither of these work. We chose to use a pre-existing environment from last

year’s team.

Our initial goal was that after testing the drone in the virtual environment, start to interact

with and test our network on the hardware of the Crazyflie drone. However, due to time

constraints, we left it as a future work.

Each step of training networks, observing performance, and adjusting reward function for

improvement was repeated until we reached the goal: a drone that can successfully take off,

hover, and land by itself without any problem in the simulation.
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PROBLEM DEFINITION & BACKGROUND

Autonomous drones have been a goal the artificial intelligence community has been working

towards for decades at this point. Whether this idea is marvelous or terrifying, with the recent

spark in interest for artificial intelligence, it seems as if the advancement of this technology

is inevitable. Thus, our team has decided to approach this problem with neuromorphic

computing. More specifically, we will train a spiking neural network to operate a small drone,

performing a variety of simple tasks.

Figure 1: Crazyflie 2.1 Drone [1]
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When approaching this problem today, one of the more popular approaches is deep learning –

a subset of traditional neural networks. Traditional neural networks, as a whole, have seen an

enormous rise in popularity over recent years, mainly due to their remarkable performance

improvements. When comparing machine learning approaches for problem-solving, often

deep learning is the path that many developers will pursue. While there are great results

that people have had with deep learning, the downsides to these networks can outweigh the

benefits.

While there is a continually growing list of concerns about using deep networks (such as

the enormous amounts of data required to train these networks), our team’s main concerns

with using deep learning involve memory capacity and efficiency. Our network will need

to operate within the drone’s hardware. Thus, the network’s storage and computational

resources are severely limited, making a deep-learning approach unsuitable.

Enter, the spiking neural network (SNN). These networks operate differently when compared

to traditional neural networks. Both types share the idea of neurons and synapses/edges, but

spiking neural networks attempt to more closely replicate biology by incorporating time as a

component of the network. In addition, SNNs often have fewer neurons and edges, helping

with the storage concerns. Furthermore, they have relatively lower power consumption (due

to the high average idleness of the neurons), helping with the computation concerns. These

networks do, however, require the use of a specialized piece of hardware called a neuro-

processor, but since we already have this hardware, this isn’t a concern to us.

Figure 2: Comparison between traditional Von Neumann and Neuromorphic architectures [2]
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Another consideration for this problem is determining the network structure. Even with

limited inputs and outputs (less than 20 in total), there could be countless amounts of pos-

sible networks. Using SNNs makes these issues worse since these networks are usually not

grid-like nor fully connected, as with traditional neural networks.

Yet another problem to consider for this task is the lack of knowledge regarding neural

networks in general. Neural networks lack a key component essential for many problem-

solving tasks: explainability. As of now, it is very difficult to accurately determine exactly how

a network structure will affect output and the network itself cannot explain. Given all of this

information, it becomes apparent that manually solving this problem is not optimal. Fortu-

nately, Dr. Schuman and TENNLab have developed an algorithm that helps with creating

model structures, tailored specifically to SNNs: Evolutionary Optimization for Neuromorphic

Systems (EONS) [3]. Another algorithm attempting to replicate biology, EONS combines

randomness and performance to enhance and modify spiking neural networks. Thus, this is

our key to creating and training SNNs [3].

THE REQUIREMENT SPECIFICATION

Figure 3: Overall Project Process

Our requirement specifications can be broken up into two main parts: Simulation and real-

world specifications. Because our physical hardware is expensive and can pose a safety risk,

the majority of our project will pertain to a simulation environment. This environment must

contain three things to successfully fulfill our needs: the ability to simulate the drone within

the environment, all relevant and useful data required by our SNN, and a high similarity to

the real world to ease the transition process from the simulation to the physical environment.

Thus, the first step in our process is to find the best simulation environment among the three

options provided to us by Dr. Schuman. After an environment is chosen, our team must
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incorporate our drone into the environment. This process includes ensuring proper flight

operation as well as proper sensor readings, as described in Fig 3.

After the preparation tasks are finished, we will begin developing various fitness functions

for our networks. Maximizing these functions is the ultimate goal of SNNs and is our way of

telling a network how it’s performing. Correctly and accurately defining these functions is a

notoriously difficult problem and will likely take up a sizeable chunk of our time. Since we are

ambitious, we plan to define multiple fitness functions, which each correlate to a different

task.

Figure 4: Overview of EONS Algorithm [3]

Once we have fine-tuned our fitness functions, we will implement the EONS algorithm into

the simulation and begin training our networks [3]. Figure 4 shows each step of EONS [3].

Once again, we anticipate that this phase will also take up a large portion of our time [3]. If

there is success in the simulation environment, we will begin the transition into real-world

operation.

Transitioning into the physical environment will require a few different steps, with the first
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involving connecting to the drone API. This step could be completed in the simulation phase

(when implementing the drone into the simulation environment), but if not, it will be the

first task after finishing the simulation phase. From the simulation, we expect to get a few

different network structures. We will load each of these networks onto the drone and measure

how they perform in the real world. Just as with the simulation, we will have multiple fitness

functions, ranging from very simple, to slightly complex, but the tasks will remain basic.

TECHNICAL APPROACH

The project consists of three different components, all of which are unique and warrant

their own approaches. The first component is the simulation environment, which is re-

sponsible for hosting the training of the drone’s algorithm. Then there is the evaluation

function, which is expected to comprise the bulk of the development time for the project

and controls what the machine learner values in training. Finally, there are hardware con-

siderations and adjustments to ensure that the physical drone matches its virtual counterpart.

For the simulation environment, there are three predominant options that have been consid-

ered. The first option is to develop an entirely novel simulation environment that is tailored

to the testing of our machine-learning model. The second is to use a simulation environment

developed by Simon Levy specifically for the Crazyflie drone [4]. Third is the option which is

the one which is currently being most heavily considered, and that is using the simulation

environment developed by the prior senior design class group who worked on this project.

This third option is what we decided to use because it combines many of the benefits of the

prior two options since it is both designed for this specific problem and does not require

much more development time.

The evaluation function is the main way the software developed in this project will interact

with the drone. It consists of a function that uses the data available to the drone to mathe-

matically determine if the drone is currently flying well. The development of an evaluation

function is a complex series of decisions in which the data generated by the model’s actions

are evaluated to determine how ’well’ the model should be considered to be performing.

These adjustments allow for the model to assess itself and improve in accordance with the

function. Currently, the evaluation function considers four main things, the angle of the

drone to check stability, the position of the drone to make sure it is within the desired area,

landing checks to make sure it lands without crashing, and a check to make sure it isn’t
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launching again after it has landed.

The hardware considerations and decisions will begin to be made later in the project after

some preliminary models have been trained and evaluated, and consist mostly of determin-

ing which ways the physical drone needs to be changed in order to align with the simulated

version, or if the simulation needs to be altered to match the physical version. Furthermore,

there are decisions to be made on which additional components need to be added to the

physical drone in order to allow it to have added functionalities, such as reading more data

points. As of now hardware functionality is a stretch goal and is considered to be something

we may work on in the future.

These three design components combine to create an autonomously operating drone, the

simulation allows the model to train, the evaluation function tells the simulation how suc-

cessful the training is, and the hardware is the application of that simulated model. The end

result should be a Crazyflie drone able to hover stably a few feet above the ground.

DESIGN CONCEPTS, EVALUATION & SELECTION

For the simulator considerations usage of the prior senior design team’s simulator is what we

decided on. The alternatives were using Simon Levy’s simulator or creating a new simulator

[5]. There were three main factors to choosing the simulator, that being how well suited it

is to the problem, ease of use, and development time. We chose the previous senior design

team’s simulator as it was developed specifically for this project, suited the project’s needs

very well, and required little to no development time devoted to tweaking the simulator.

Much of the same is true with Simon Levy’s simulator, however as it was not designed for this

project specifically, it is likely it is not as well suited to the project, and therefore the senior

design simulator is preferable. The third option of development of a new simulator was not

employed because, while it is possible that a simulator that is more effective and easier to use

would be created, such an effort would have likely consumed all the development time and

have left the primary objective of training a drone to hover to be uncompleted [5].

The decisions in the evaluation function are in constant flux and change from week to

week as the process of creating a machine learning model is very much one of trial and

error. Currently, the most successful models we have created account for drone stability,

presence within a specified area, and quality of landing. We are looking into adding further
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considerations to stop undesirable behavior that we are encountering such as the drone

repeatedly hopping to get the landing benefit several times.

The decisions associated with hardware will, similarly to the evaluation function, need

to be determined by extensive testing, some hardware adjustments will become necessary to

accommodate new sensors for the drone to utilize in its data gathering so it can accurately

reflect the sensing capabilities of its virtual twin. Other hardware adjustments will need to be

made in order to keep it more in line with this virtual twin and make sure it is performing

similarly enough to the simulation. Both of these decision points require a somewhat func-

tioning model and a preliminary evaluation function to begin being considered, therefore it

is impossible to say with certainty what these decisions look like at this stage, and it is likely it

will end up being beyond the scope of the project.

The broadest possible hardware consideration that is being considered is the choice of

drone. Currently, the Crazyflie drone is being considered for its small size and already es-

tablished code base, but should it prove uncooperative other autonomous drone options

exist, such as the flapper drone, but the flapper drone has the issue of being much more

experimental, as well as expensive, furthermore it has a much more unfamiliar code base,

that our researched simulators cannot accommodate. If other drones were implemented it

would likely restructure the entirety of the project, and as such should be only considered if

usage of the Crazyflie proves to be completely impractical.

PRODUCT EVALUATION & TEST/EVALUATION PLAN

The project has distinct yet interconnected physical and digital characteristics that need to

be developed.

We first familiarize ourselves with the simulation environment created by the previous senior

design group, from there the majority of the workflow will be discovering what the best test

plan is, and that affects how the prototype makes itself. The simulation already creates a

machine learner to control the drone, the main problem we are solving is that our reward

structure, which is effectively test evaluation, is not optimally rewarding the learner for sta-

ble flight, and it is therefore not flying properly. Deciding what characteristics need to be

rewarded and which need to be penalized.
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For hardware, we will not be able to complete it in time. Dr. Simon will be here over the

summer and working on implementing our network into the physical drone, and we will be

helping him after graduation as our future work.

Figure 5: Drone Test Simulation

SOCIAL IMPACT EVALUATION

The current scope of our project is research. While we currently do not anticipate full-scale

development and distribution of this autonomous drone, we would still like to speculate

and identify its social impact. A small form factor, SNN-controlled drones could have a

variety of use cases, including sorting, identification, and reconnaissance. The needs for

these scenarios, that we would like our drone to solve, might include efficiency, compactness,

routing, etc. We plan to solve these needs in the future.

Our project is trying to implement autonomous drone control. With this type of technology,

many people will be affected in a variety of ways. This technology could be a catalyst for

a multitude of new laws and regulations. In addition, successful deployment of this drone

could put pressure on certain job positions, perhaps eliminating certain human-designated

roles.

When working with neural networks and autonomous drone operation, there could be many

ethical dilemmas that arise. These include privacy and ethical issues that we, as a team,
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have to address while working on this project. In addition to ethical concerns, our team also

has professional responsibilities to which we must adhere to maintain good engineering

practices. Examples will be added in the future.

Figure 6: Drone Flight Path

Figure 6 shows an example of the flight path of a drone for one of the simulations. Each

point represents the location of the drone when the reward was stored. The color bar on the

right represents each time step when the reward was recorded. The drone flies, hovers, and

then lands without crashing. There is a point that seems to be an outlier with a location of

(0.8, 0.0) with a height of zero. We assumed that it might be a noise to our data.
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Figure 7: Drone Location and Corresponding Final Reward

Figure 7 shows the location of the drone and corresponding final reward values. For this

graph, the color bar represents the ’final_reward’ value that is being stored after many reward

values are being stored. Higher final reward values are located closer to the location of (0,

0) which is the start location of the drone. As the final reward decreases, the location of the

drone is clustered towards (600, 800), which is further from the starting point. This is the

behavior that we intended because we wanted our drone to stay where it is in terms of (x, y)

location. Therefore, if the drone got further from the starting point, it was penalized so that

the drone would stay within the origin.

DELIVERABLES AND MILESTONES (NEED TO BE UPDATED)

The primary deliverable of this project is providing the customer with a drone simulator

that is controlled autonomously using spiking neural networks. The initial goal of the drone

simulator is to achieve stable drone operation in a simulated environment. The stretch goals

of the drone are to achieve stable drone operation in a real-world environment and make

the drone safely follow a leader drone and once this is working, we want to apply swarming

together. The drone simulator delivers the following components:

1. Evolutionary Optimization for Neuromorphic Systems(EONS) for model building and

training
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2. Simulation environment for training and experimenting with the drone and the network

The stretched goal could deliver the following components:

1. Crazyflie drone

2. Neuromorphic Hardware to run the spiking neural network controlling the drone

Software development was based on the existing network which needs some control refining.

In addition, we applied EONS to train networks for an application. To test and develop our

software, we used the existing physics simulator which is for takeoff and landing [3]. All the

deliverables will be provided to the customer before the senior design showcase, on May 3rd

of 2024.

PROJECT MANAGEMENT

Roles

Our project, which consists of four people, aimed to have each member choose a role they

are confident in, faithfully carry out their duties, and coordinate opinions with each other to

create optimal work.

As software developers, all team members understood how the previous network devel-

oped and then worked to improve it. We focused on the process of training a Spiking Neural

Network using EONS, and the implemented Spiking Neural Network will be tested using a

physical simulator [3] [4] [5].

As a team leader, Tyler Nitzsche monitored the overall quality of the project. His experi-

ence in conducting projects using the Spiking Neural Network was useful in our project.

Based on his experience and knowledge, we could draw a blueprint for building a Spiking

Neural Network model. Furthermore, we were able to develop a fine drone flying simulator.

As a project organizer, Jihun Kim planned the overall schedule of the project and rearranged

it considering the circumstances of each group member. He adjusted the sprint and schedule

according to progress and tried to create a schedule that would achieve optimal efficiency

within a limited time.
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As hardware developers, Seoyoung An and Jonathan Skeen planned to apply the software

we developed to hardware so that drones can utilize it. To achieve this, they could be re-

sponsible for designing and designing the drone’s hardware and choosing what hardware to

use. However, the project was adjusted to focus more on improving the simulator using SNN.

Hardware development was changed to a stretch goal, and then it was temporarily postponed

before it was ultimately canceled.

This project covers a lot of tasks, and given the different experiences of each group member,

we aim to create an environment where each member not only plays his or her role but

also supports each other during the work. Each member was a reviewer or tester, finding

problems and improvements in each other’s work. This work helped prevent bigger problems

and create better software.

Milestones

To ensure deadlines and manage schedules from the Fall 2023 semester to the Spring 2024

semester, we divided the work into five sprints as Table 1 shows. There may be changes in the

order of work, additions, or exclusions of tasks in the future.

The Gantt chart in Figure 8 shows the overall schedule of the project in a table.
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Figure 8: Part of the Gantt Table of the Project

The Gantt chart has been modified to improve accessibility and make schedule management

more convenient by modifying the template provided by Google Spreadsheet to automatically

fill the table when someone enters the start and due dates. It also has the advantage of being

able to easily determine who is working on what task. We expect that by updating the Gantt

chart, we will be able to easily check the progress of the project and through this, we will be

able to control the progress of the project.
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BUDGET

We didn’t have a definitive budget. To order necessary parts or equipment, we would create

a list of parts, their prices, and associated links that lead to where the parts can be bought.

The list would be confirmed by our advisor, Dr. Schuman. Then, we would send an email to

eecs-orders@utk.edu and CC the teaching assistant of the COSC 401 course, including the

name of our project, team lead, list of items, price range, and explanation of why we need

them. The possible items that we might need to buy were another drone and sensors like

gyroscopes for the drone.

As we approached the end of the project, we realigned our objective to prioritize the re-

finement of our simulator framework over the implementation of the physical drone. Fur-

thermore, acquiring a new drone and getting familiar with it will not be possible within less

than two months period. Therefore, we have opted to utilize the existing drone available in

Dr. Schuman’s lab, which will maximize efficiency through leveraging pre-existing resources.

Therefore, we did not use any budget.
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APPENDIX

Figure 9: Project Quad Chart
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Table 1: Milestone in Each Sprint

Sprint 1 10/02/2023 – 01/22/2024
Sprint 1 is the longest, running from the start of the project until the start of Spring 2024.

During Sprint 1, group members identify the size of the project, set project goals,

and devise detailed goals for this goal.

During this period, group members met with our mentor, Dr. Schuman, to hear

about the project and gain insight into the project. This information includes

software resources, hardware resources, place support, and funding available to us.
Sprint 2 01/21/2024 – 02/17/2024
Sprint 2 is the period from the start of the 2024 spring semester to the filming of the first video.

The goal of Sprint 2 is to produce an early prototype. During this period,

group members can increase their understanding of TENNLAB’s resources, including EONS,

through TENNLAB’s introductory videos, and acquire basic knowledge to implement

the software needed for the project. After this, we will find out the level of the network

that has already been implemented, establish directions on how to improve it,

and begin software development.
Sprint 3 02/18/2024 – 04/06/2024
Sprint 3 is the period from the first video recording to the third video recording.

The goal of Sprint 3 is the complete (or near complete) implementation of the software

for hardware. During this period, we will seek to improve the early prototype implemented in

Sprint 2 through network optimization and training. In this process, we will utilize a

physics simulator. We can either use the simulator designed by the previous senior design

course or one that has been developed by Simon Levy.
Sprint 4 04/06/2024 – 05/03/2024
Sprint 4 is the period from the third video recording to the end of the project.

The goal of Sprint 4 is to prepare for the presentation.

Sprint 4 includes making a poster and printing it.
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